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Abstract. Vortices circulating in a ring made from a Josephson array in the insulating phase are studied.
The ring contains a ‘dual Josephson junction’ through which the vortices tunnel. External non-classical
microwaves are coupled to the device. The time evolution of this two-mode fully quantum mechanical
system is studied, taking into account the dissipation in the system. The effect of the quantum statistics
of the photons on the quantum statistics of the vortices is discussed. Entropic calculations quantify the
entanglement between the two systems. Quantum phenomena in the system are also studied through
Wigner functions. After a certain time (which depends on the dissipation parameters) these quantum
phenomena are destroyed due to dissipation.

PACS. 74.50.+r Tunneling phenomena; point contacts, weak links, Josephson effects –
85.25.Dq Superconducting quantum interference devices (SQUIDs) – 42.50.Dv Nonclassical states of the
electromagnetic field, including entangled photon states; quantum state engineering and measurements

1 Introduction

There has been a lot of interest in coherent electron be-
haviour in Josephson devices for a long time. The new
development in the last ten years [1] has been the ex-
perimental and theoretical study of mesoscopic Josephson
devices (small Josephson junctions with low capacitance)
where quantum phenomena are stronger.

Coherent vortex behaviour in insulating systems (re-
alised with Josephson arrays made from superconduct-
ing islands coupled through Josephson junctions) has also
been studied in the literature [2–5]. There is a duality be-
tween electrons in the superconducting phase and vortices
in the insulating phase which has been studied in [6,7].
Similar duality has been studied in various branches of
physics (Krammers-Wannier duality [8], t’Hooft duality
in Gauge theories [9], duality in quantum hair of black
holes [10], etc.). The superinsulator state, which is a co-
herent superposition of suitable vortex number states,
is the quantum dual of the well known superconduct-
ing state, which is a coherent superposition of suitable
electron pair number states. Superinsulators are based on
vortex condensates in dual way to the Cooper pair con-
densates in Josephson junctions. In superinsulators vor-
tices move with high mobility in an analogous way to the
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Cooper pairs in superconductors. We stress that the ter-
minology indicates the behaviour of electric charges; while
the behaviour of vortices is the opposite. For example the
superconductors conduct electric charges and insulate vor-
tices. The insulators insulate electric charges (because the
Coulomb coupling constant EC is greater than the Joseph-
son coupling constant EJ and it requires a lot of energy
for electrons to move from one superconducting island to
the next one); and conduct vortices (superconduct in the
case of negligible dissipation).

Two condensates close to each other can lead to
Josephson junction phenomena. Two weakly linked vor-
tex condensates lead to ‘dual Josephson junctions’ for vor-
tices which have been studied in reference [11]. They are
weak links between two ‘superinsulators’ and vortices tun-
nel through them in an analogous (dual) way to the tun-
neling of electron pairs through weak links between two
superconductors (Josephson junctions).

At the same time there has been significant develop-
ments in quantum optics. Non-classical electromagnetic
fields have been studied extensively both experimentally
and theoretically. These fields are carefully prepared in a
particular quantum state so that the amount of quantum
noise is well defined and the statistics of photons is also
well defined.

In this paper we consider a ring made from a Josephson
array in insulating phase. The vortex mass is inversely
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Fig. 1. A Josephson array ring in the insulating phase, cou-
pled to a source of non-classical microwaves. The ring contains
a dual Josephson junction (i.e. a Josephson junction for vor-
tices). The voltmeter measures the vortex current. The cur-
rent i compensates the dissipation.The centre of the ring con-
tains charge Q(t) induced through coupling with a cylindrical
waveguide in the TM01 mode.

proportional to EC and is very low so that the vortices
behave as quantum particles. In this case vortices cir-
culate this ring with high mobility. The ring contains a
dual Josephson Junction through which the vortices tun-
nel. The system interacts with non-classical microwaves
(at GHz-THz frequencies) [12]. This is a fully quantum
mechanical system and we study explicitly how the quan-
tum noise of the electromagnetic fields affects the quantum
noise of the vortex current. Preliminary results on this sys-
tem in the absence of dissipation, have been presented in
reference [13]. In this paper we extend further this work
taking into account the dissipation in the system. The re-
sults show that interesting quantum phenomena occur up
to a certain time. They include nonclassical statistics (for
both the device and the microwaves), entanglement be-
tween the two modes, etc. After a certain time dissipation
destroys these phenomena.

Josephson systems are good candidates for the devel-
opment of amplifiers and frequency converters operating
at THz frequencies, which is the modern tendency in Com-
munications. There is also a lot of work currently, for their
use as quantum gates in Quantum Technology and Quan-
tum Computing [14]. Nonclassical states in Josephson sys-
tems have been produced experimentally in [15].

2 Interaction of Josephson arrays
with external non-classical microwaves

We consider a ring (Fig. 1) made from an array of Joseph-
son junctions with Coulomb coupling constant EC greater
than the Josephson coupling constant EJ . For those val-
ues of the parameters the array is in the insulating phase
where vortices move with high mobility and charges are
confined. Such rings have been considered experimentally
in the context of the Aharonov-Casher effect in refer-
ence [5].

However, our ring has also a ‘dual Josephson junc-
tion’ [11]. This plays a similar role for vortices, to the
ordinary Josephson junctions for electron pairs. The ‘dual
phase’ of the vortex wavefunction has a phase difference δ
along the dual Josephson junction. This is analogous to
the Cooper-pair wavefunction in superconducting rings
with Josephson junctions which has phase difference
φ along the junction. The centre of the ring contains
charge Q(t) induced through coupling with an external
source of microwaves which are carefully prepared in a
particular quantum state. For example we can put the de-
vice of Figure 1 in a cylindrical waveguide in the TM01

mode with the plane of the diagram perpendicular to the
axis of the cylinder.

Microwaves in various quantum states have been pro-
duced experimentally in several laboratories. The system
operates at low temperatures (�Ω1 > kBT and �Ω2 >
kBT ), so that the thermal noise is less than the quantum
noise in the microwaves and the device.

The Hamiltonian that describes this device has an in-
ductive, a capacitive and a ‘dual Josephson’ part. The
inductive part is

Hind =
1
2
LI2 +

1
2
LmwI2

mw − gIImw (1)

where L is inductance of the device, Lmw is the induc-
tance of the circuit that produces the external microwaves
and g is the mutual inductance between the two circuits.
For simplicity we assume that L = Lmw and that we
have maximum coupling between the two circuits so that
g =

√
LLmw = L. I and Imw are the total and external

(microwave) current correspondingly, flowing in the radial
direction of the device. In this case the above inductive
term of Hamiltonian can be written as

Hind =
1
2
L(I − Imw)2 =

1
2L

(Φ − Φmw)2. (2)

Making similar assumptions for the capacitive part of the
Hamiltonian we write it as

Hcap =
(Q − Qmw)2

2C
(3)

where C is the capacitance between the inner and outer
boundaries of the ring. Q and Qmw are the total and ex-
ternal (microwave) charge correspondingly, in the inner
boundary of the ring. The ‘dual’ Josephson part of the
Hamiltonian is in general

HdJ = EdJ(1 − cos δ) (4)

EdJ is the dual Josephson coupling constant and δ =
Φ0Q the dual phase. Φ0 = π/e is the flux quantum (in
units where � = kB = c = 1). The sinusoidal term
EdJ(1−cos δ) describes vortex tunnelling through the dual
Josephson junction. This is analogous to the well-known
term EJ (1 − cosφ) which describes the tunnelling of elec-
tron pairs in Josephson junctions. The total Hamiltonian
of the system is

H =
1
2
L(I − Iex)2 +

(Q − Qex)2

2C
+ EdJ(1 − cos δ). (5)
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The system comprises of two coupled oscillators. The
first is the Josephson device which behaves as a non-
linear L−C circuit with frequency Ω1 = (LC)−1/2. Quan-
tization of the device is done with the creation and anni-
hilation operators

a1 =
(

1
2Ω1C

)1/2

[Q + iΩ−1
1 I], (6)

a†
1 =

(
1

2Ω1C

)1/2

[Q − iΩ−1
1 I], (7)

[
a1, a

†
1

]
= 1. (8)

We note that Ω1 = (LC)−1/2 is the frequency of the lin-
ear part of the device. The sinusoidal non-linearity renor-
malises this frequency (i.e., there is an a†

1a1 term within
the cos δ non-linearity). The electromagnetic field is quan-
tized with the operators:

a2 =
(

1
2Ω2C

)1/2

[Qmw + iΩ−1
2 Imw], (9)

a†
2 =

(
1

2Ω2C

)1/2

[Qmw − iΩ−1
2 Imw], (10)

[
a2, a

†
2

]
= 1 (11)

where Ω2 = (LC)−1/2 is the frequency of the microwaves.
We note that for the parameters considered Ω1 = Ω2.

The Hamiltonian can now be written as

H = Ω1a
†
1a1 + Ω2a

†
2a2 − EdJ cos

[
µ

(
a†
1 + a1

)]

− Ω1

(
a†
1a2 + a1a

†
2

)
(12)

where µ = Φ0(Ω1C/2)1/2.

3 Time evolution

In the presence of dissipation (e.g. [16]) the density matrix
of the system ρ(t) is given by

∂ρ

∂t
= i[H, ρ] +

γ1

2
(M + 1)

(
2a1ρa†

1 − a†
1a1ρ − ρa†

1a1

)

+
γ1

2
M

(
2a†

1ρa1 − a1a
†
1ρ − ρa1a

†
1

)

+
γ2

2
(M + 1)

(
2a2ρa†

2 − a†
2a2ρ − ρa†

2a2

)

+
γ2

2
M

(
2a†

2ρa2 − a2a
†
2ρ − ρa2a

†
2

)
, (13)

where ρ(0) is the density matrix at t = 0. γ is the damp-
ing rate and M is the average number of bath quanta.
For a monochromatic bath with frequency ωB in thermal
equilibrium at temperature T ,

M(ωB) =
(
eωB/T − 1

)−1

. (14)

This is a simple model for dissipation. It takes into ac-
count the effect of the environment on system which will
be placed in a cavity (with a large but finite Q-value).
There are of course many sources of dissipation in such a
complex system. The above model is an effective formal-
ism which can be used to describe collectively the effect
of various sources of dissipation. Experimentalists can use
the numerical results of this model to fit their data and
extract the values of the parameters γ1, γ2, M describing
in this way the very complex phenomenon of dissipation
in this system, with three parameters.

Details for the numerical solution of equation (13) are
given in the appendix. We have calculated numerically ρ(t)
and the reduced density matrices

ρ1(t) = Tr2ρ(t); ρ2(t) = Tr1ρ(t). (15)

Using the reduced density matrices we calculated the av-
erage number of quanta in each mode

〈Ni〉 = Tr
[
a†aρi

]
(16)

as functions of time.
The infinite dimensional matrix 〈M1, M2|H |N1, N2〉

has been truncated for the numerical calculations,
with M1, N1 taking values from 0 up to K1max and M2, N2

taking values from 0 up to K2max. Correspondingly,
K1max and K2max were taken to be much greater
than 〈N1〉 and 〈N2〉. As a measure of the accuracy of the
approximation we calculated the traces of the truncated
matrices. In the limit K1max → ∞ and K2max → ∞ they
equal to 1; and in the truncated case they should be very
close to 1. In all our results the above sum was greater
than 0.98.

4 Quantum statistics and quantum noise

The microwaves have been carefully prepared in a quan-
tum state and this implies that the quantum statistics of
the photons threading the ring, is known. In our anal-
ysis we study a ‘Quantum Faraday Law’ and investigate
how the quantum statistics and quantum noise of the pho-
tons affects the quantum statistics and quantum noise of
the tunneling vortices. In order to quantify the quantum
statistics, we calculate the second order correlations

g
(2)
ii =

〈
N2

i

〉 − 〈Ni〉
〈Ni〉2 ; i = 1, 2, (17)

g
(2)
12 =

〈N1N2〉
〈N1〉〈N2〉 , (18)

and the ratio

r =
[g(2)

12 ]2

g
(2)
11 g

(2)
22

· (19)

The g
(2)
11 describe vortex bunching or antibunching; and

the g
(2)
22 describe photon bunching or antibunching. The

quantum noise is quantified with the uncertainties

(∆xi)2 = Tr
(
ρx2

i

) − [Tr(ρxi)]2; i = 1, 2 (20)
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Fig. 2. At time t = 0 the device is in the lowest (vacuum) state
|N = 0〉 and the microwaves in the coherent state |A = 2〉.
Results are in the absence of dissipation.

5 Entanglement

At t = 0 the system is not entangled, but as time evolves
the microwaves entangle with the Josephson array device.
As a measure of the correlations between the two modes
we have calculated the entropy [17]

I = S(ρ1) + S(ρ2) − S(ρ), (21)

where S = −Trρ lnρ is the von Neumann entropy. The en-
tanglement entropy I is positive according to the subaddi-
tivity property. The results show that although originally
the two modes are uncorrelated, they become strongly
correlated later. These correlations might be classical or
quantum mechanical (entanglement). Reference [18] have
used the conditional entropies

I1 = −S(ρ1) + S(ρ)
I2 = −S(ρ2) + S(ρ) (22)

as a criterion for entanglement. When Ii < 0 (i = 1, 2) the
system is entangled (although the converse is not true, i.e.,
an entangled system might have Ii > 0).

If the system is in a pure state at t = 0 and evolves
unitarily in a dissipationless environment then S(ρ) = 0
and S(ρ1) = S(ρ2). In this case I = −2I1 = −2I2 and
therefore a positive value of I indicates a negative value
of Ii and hence entanglement.

6 Results

In Figure 2 we assume that at time t = 0 the device is
in the lowest (vacuum) state |0〉 (a1|0〉 = 0) and the mi-
crowaves in the coherent state |A = 2〉 (a2|A〉 = A|A〉).
Ω1 = Ω2 = 1.5 × 10−4, EdJ = 10−4, µ = 2.8408 and
truncation Ki max = 10. In these results there is no dissi-
pation (γ1 = γ2 = 0). The first graph shows 〈N1〉 (solid
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Fig. 3. Results for the model of Figure 2 with dissipation
γ1 = 2 × 10−4, γ2 = 10−4 and M = 1.

line) and 〈N2〉 (broken line) as functions of time. The re-
sults show the exchange of energy between the two modes.
The second graph shows g

(2)
11 (solid line), g

(2)
22 (broken

line) and r (dotted line) as functions of time. It is seen
that when one of the modes is described by Poissonian
statistics (g(2) = 1) the other mode is described by super-
Poissonian statistics (strong bunching). These two statis-
tics are exchanged almost periodically as functions of time.
The third graph shows the uncertainties

√
Ω∆x1 (solid

line) and
√

Ω∆x2 (dotted line) as functions of time. The
fourth graph shows the entropies I (solid line), I1 (bro-
ken line) and I2 (dotted line) in natural units (nats) as
a function of time. As we explained above since in this
example at t = 0 the system is in a pure state and there
is no dissipation, I = −2I1 = −2I2. The results show that
we have strong entanglement.

In Figure 3 we show results for the model of Figure 2
with dissipation γ1 = 2 × 10−4, γ2 = 10−4 and M = 1.
The results show clearly the destructive role of dissipation
on quantum phenomena. After some time, there is no ex-
change of energy between the two modes, the statistics is
thermal or even ‘super-thermal’ and there is no entangle-
ment. Comparison of the entanglement results in Figure 2
(no dissipation) and in Figure 3 (with dissipation) shows
that the dissipation after some time destroys the entan-
glement. Indeed, in the absence of dissipation (Fig. 2) the
quantity I = −2I1 = −2I2 is an increasing function of
time. In contrast in the presence of dissipation (Fig. 3)
the same quantity very quickly becomes almost zero.

In order to see clearly the effect of dissipation we have
calculated the Wigner function defined as the Wigner
function of an ‘arbitrary’ operator Θ (in our case the den-
sity matrices)

Θ =
∑
N,M

ΘNM |N〉〈M | (23)
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Fig. 4. The Wigner function for the state of the device at
Ω1t = 6 for the model of Figure 2 with no dissipation.
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Fig. 5. The Wigner function for the state of the microwaves
at Ω2t = 6 for the model of Figure 2 with no dissipation.

is defined as

W (x, p) =
1
2π

∫
dX

〈
x +

1
2
X |Θ|x − 1

2
X

〉
exp(−ipX)

=
∑
N,M

ΘNMWMN (x, p) (24)

where

WMN (x, p) =
(−1)N

π

(
N !
M !

)1/2 [
21/2(x + ip)

]M−N

× exp
(−x2 − p2

)
LM−N

N

(
2x2 + 2p2

)
(25)

and LM−N
N are Laguerre polynomials.

In Figure 4 the Wigner function for the state of the de-
vice at Ω1t = 6 for the model of Figure 2 with no dissipa-
tion. In Figure 5 we show the Wigner function for the state
of the microwaves at Ω2t = 6 for the model of Figure 2
with no dissipation. In Figure 6 we show the Wigner func-
tion for the state of the device at Ω1t = 6 for the model
of Figure 2 with dissipation γ1 = 2 × 10−4, γ2 = 10−4

and M = 1. In Figure 7 the Wigner function for the state
of the microwaves at Ω2t = 6 for the model of Figure 2
with dissipation γ1 = 2 × 10−4, γ2 = 10−4 and M = 1.
Figures 6 and 7 show that both modes are described by
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Fig. 6. The Wigner function for the state of the device at
Ω1t = 6 for the model of Figure 2 with dissipation γ1 = 2 ×
10−4, γ2 = 10−4 and M = 1.
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Fig. 7. The Wigner function for the state of the microwaves
at Ω2t = 6 for the model of Figure 2 with dissipation γ1 =
2 × 10−4, γ2 = 10−4 and M = 1.

almost Gaussian Wigner functions which are characteris-
tic of thermal states. This is not the case for Figures 4
and 5 where there is no dissipation. So after some time
dissipation thermalises both modes. This can also be seen
from the values of g(2), but the Wigner functions show it
very clearly in the position momentum plane.

We note that similar behaviour with our model is
exhibited by other models like for example the Jaynes-
Cummings model [19] which describes the interaction
of light with Rydberg atoms. We stress however that
Josephson models have strong sinusoidal non-linearity.

7 Discussion

We have considered a ring made from a Josephson array in
the insulating phase. The ring contains a dual Josephson
junction through which the vortices tunnel. From a math-
ematical point of view the dual Josephson junction is de-
scribed with a sinusoidal non-linear term. External non-
classical microwaves are coupled to the device. The work
explores dual Josephson junctions and dual Josephson
phenomena with vortex condensates.



284 The European Physical Journal B

We have calculated the time evolution of this fully
quantum mechanical two-mode system in the presence of
dissipation. The results have shown that for short times,
there is an exchange of energy between the microwaves and
the vortices. We have also studied quantitatively (with
the g(2)) how the quantum noise of the electromagnetic
field affects the quantum noise of the vortices; and how
the two modes become entangled. However, all these im-
portant quantum phenomena occur only for short time
after which the dissipation dominates. The results answer
quantitatively the practically important question of how
long the coherence is preserved.

Our model can be useful in the context of quantum
gates based on Josephson technology; and also in the con-
text of THz technology.

A.K. gratefully acknowledges support from EPSRC.

Appendix

We solve the truncated equation (13) by converting it into
the form

dr

dt
= Ar, (26)

where r is a ‘density vector’, and , and A is an ‘appropri-
ate’ matrix.

By ‘density vector’ we mean a vector representation of
the truncated density matrix ρmnκλ. Our density matrix
is four dimensional and after truncation it has (Kmax+1)4
elements. Using the built-in function reshape in MATLAB,
this matrix has been converted in a first stage into a
two dimensional matrix and then into a one-dimensional
vector r [20].

The matrix A, is such that its action on the density
vector r is the same as the action of the combination of
the operators H , a1, a†

1,a2, a†
2 on the density matrix ρ

in equation (13). Since r is (Kmax + 1)4 by 1, A will be
(Kmax+1)4 by (Kmax+1)4. The ordering of the operators
is crucial.

For simplicity we explain it for the one mode case and
the two mode case which is of interest to us in this paper
is straightforward generalisation. In general, if the opera-
tor B acts on the left of a one mode ρ, the corresponding
appropriate matrix B is obtained by putting Kmax + 1
copies of B along the leading diagonal:

Bkl =




Bmn if k = p(Kmax + 1) + m,

l = p(Kmax + 1) + n,

where 0 ≤ p, m, n ≤ Kmax

0 otherwise.

(27)

For example, the matrix equation

Bρ =
(

a c
b d

) (
w y
x z

)
=

(
aw + cx ay + cz
bw + dx by + dz

)
(28)

becomes the vector equation

Br =




a c
b d

a c
b d







w
x
y
z


 =




aw + cx
bw + dx
ay + cz
by + dz


 . (29)

If the operator C acts on the right of the one mode ρ, the
corresponding appropriate matrix C is given by interlacing
inflated copies of the transpose of C (not C†) along the
leading diagonal:

Ckl =




Cnm if k = p + m(Kmax + 1),

l = p + n(Kmax + 1),

where 0 ≤ p, m, n ≤ Kmax

0 otherwise.

(30)

For example, the matrix equation

ρC =
(

w y

x z

) (
a c

b d

)

=
(

aw + by cw + dy

ax + bz cx + dz

)
(31)

becomes

Cr =




a b

a b

c d

c d







w

x

y

z


 =




aw + by

ax + bz

cw + dy

cx + dz


 . (32)
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